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1. Introduction 

 
 

 

 

 

         “Yes, we have to divide up our time like that, between 

our politics and our equations. But to me our equations are 

far more important, for politics are only a matter of present 

concern. A mathematical equation stands forever.” 

 

Attributed to Albert Einstein 

 

 

 

 

 

This is a continuation of the previous reports in this series (1, 2), where the motivation is 

presented.  In those reports, we gave several examples of generating complete 

thermodynamically consistent equations of state (EOS).  The methodology used there was based 

on combining some ad-hoc generalizations of classical models with available experimental data.  

The EOS have been presented in analytical form as functions of the experimental data.  Their 

numerical implementation has been discussed by Bilyk et al. (3). 

We begin with the general analysis which does not rely on any particular assumptions but those 

of classical thermodynamics (like, for instance, the assumption of dealing with a two-parameter 

system).  In this respect, our method reminds the remarkable short letters of Peek and Salsburg 

(4) and of Zel’dovich (5), although the differences between the two methods are quite significant 

and will be discussed elsewhere.  Unfortunately, so far the Peek-Salburg-Zel’dovich approach 

did not find many followers neither in the former Soviet Union nor in the West.  The only 

exception that this author is aware of is the paper of Fortov and Krasnikov (6).  

In general, our approach leads to a pair of integro-differential equations which, probably, should 

be solved numerically.  We then proceed with the special case of constant heat capacity.  This 

special case is particularly important for applications and, fortunately, permits explicit solution. 
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2. Required Notions and Basic Formulas 

In this report, we present a methodology which does not rely on any a priori guesses regarding 

the structure of the EOS.  The only assumption made is that the substances under study can be 

treated as two-parameter thermodynamic systems with sufficiently smooth EOS. 

According to our definition, for a medium with two thermodynamic parameters, the complete 

EOS for hydrocode is nothing but the specific entropy density S  presented as a function of the 

specific volume V  internal energy density E : 

  ,S S V E
.
 (1) 

 

In terms of this function, the pressure  ,P P V E  and the absolute temperature can be 

presented in the following form: 

  

 

 
 

 

,

1
, , ,

, ,

S V E

VP V E T V E
S V E S V E

E E



 
 

   

. (2) 

 

The isentrope in the  ,V E  parametric space is a curve  SE E V  along which entropy density 

remains constant.  We use notation  **

SE E V  for the isentrope passing through the state 

 * *,V E .  In figure 1, two isentropes,  **

SE E V  and  SE E V , are presented in green:  the 

former passing through the state  * *,V E  and the latter passing through the state  ,V E  . 
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E

V

 ,V E 

 * *,V E

 **

SE E V

 SE E V

 **

HE E V

 

Figure 1.  The isentropes (green) and the Hugoniot adiabat in the  ,V E plan.  

 

Given the starting state  * *,V E , the Hugoniot adiabat  **

HE E V is the curve presented all the 

states  ,V E , which can be reached from the starting state by means of the shock waves of 

different intensity.  In the starting state  * *,V E , the isentrope and the Hugoniot adiabat have 

common tangent lines.  However, somewhat farther from that state, the Hugonuit adiabat has a 

bigger tangent line and, quite often, it even has a vertical asymptote at a finite value of the 

specific volume.  There are two more principal distinctions between isentropes and Hugoniot 

adiabats.  First, each isentrope can be extended from its pole  ,V E   in both directions; the 

Hugoniot adiabat can be extended in a single direction only.  Second, if a new point  ,V E  

on the Hugoniot adiabat  **

HE E V  is chosen as a starting point, then the new Hugoniot adiabat 

 HE E V does not coincide with  **

HE E V .  Further properties of the Hugoniot adiabat can 

be found in numerous textbooks, including the classical ones (7, 8). 

Given the isentrope  SE E V , the pressure values  SP P V  on this very isentrope can be 

calculated by means of differentiation only as 

 

  
 S

S

dE V
P V

dV



    . (3) 
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The opposite is also true.  Given the pressure values  SP P V , the equation of the isentrope 

can the calculated by means of straightforward integration: 

    
V

S S

V

E V d P 



    . (4) 

Experimenters usually measure the pressure  SP P V  on isentropes, not the energy 

density  SE E V .  When dealing with the Hugoniot adiabat, the situation is opposite (9, 10).  

The first things experimenters measure in typical experiments on shock waves are the velocities 

of the material particles in front of and behind the shock wave and the velocity of the shock front 

itself.  Then, using those measurements and the conservation equations across the shock front, it 

is possible to calculate the specific energy density  **

HE E V  and the pressure  **

HP P V  

behind the shock front.  The functions  **

HE E V and  **

HP P V  characterizing the Hugoniot 

adiabat are interrelated according to the classical Rankine-Hugoniot formula 

 

  
   ** * * *

**

*

2 2H

H

E V E P V V
P V

V V

  
 


 . (5) 

 

Summarizing, having the experimentally determined data on  SP P V  and  **

HE E V , we  

can automatically calculate two more functions:   SE E V  and  **

HP P V . 

If we have the experimentally determined specific heat capacity  ,VC C V E  at fixed volume, 

then the complete EOS for hydrocode can be presented in the following form: 

    
   *

,
,

E

E

d
S V E V

V V




  

  , (6) 

where the function  ,V E  is defined as  

    
*

1, ,

E

V

E

V E d C V    , (7) 

whereas the functions  V  and  V  should be recovered from additional experimental data. 

The value of the function  V  at *V V  is equal to the value of the absolute temperature *T  

in the state  * *,V E . 

  * *V T   . (8) 
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3. The EOS Recovery for a General Heat Capacity Function  VC V,E  

The recovery of the EOS with non-constant heat capacity is important for application (see 

Segletes [11] and references therein).  In order to recover the complete EOS (equation 6), we 

have to express the functions  V  and  V  in terms of experimental data.  To find those 

functions from the isentrope  SE E V and the Hugoniot adiabat  **

HE E V  actually means 

to express the functions  V  and  V  in terms of the functions  ,VC C V E ,  SE E V , 

and  **

HE E V .  From the previous discussion, it follows that we automatically get two 

additional functions,  SP P V  and  **

HP P V , which can be calculated with the help of 

equations 3 and 5, respectively. 

In fact, the functions  V and  V  can be recovered with the help of the function 

 SE E V and  **

HE E V by means of solving the following pair of the integro-differential 

equations: 

  
 

   *

0
,

SE V

E

d
V S

V V



   
 




 ,  (9) 

and 

  

 

   

 
 

    **

**

**

**
0

, ,

S

H

H
E V

H

HE V

dE V
P V

d d dV

dV V V V E V V

 

 
   





 

, (10) 

that should be combined with the initial condition (equation 8).  

In fact, the system (equations 9 and 10) can be solved sequentially.  First, we solve equation 10 

for the function  V , and then we calculate the function  V  with the help of equation 9.  

The solutions should be then inserted into equation 6. 
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4. Explicit Recovery Formulas for the Case of Constant Heat Capacity 

Solution of the general system (equations 9 and 10) requires computer-based methods.  

Fortunately, an explicit solution is possible in the case of constant heat capacity.  This special 

case is important in many practical applications.  In addition, when implementing computer-

based methods, explicit solutions play a crucial role in validation and verification procedures.  

In this case, the solution of equation 10 with the initial data (equation 8) for function  V  can 

be presented in the following explicit form: 

 
   * *1 ,V T V V   

 
. (11) 

Here, and in the following, we need two non-dimensional functions  *,V V and  *,V V of 

two variables which can be presented in the form 

        
 

*

*

*

1
, , , ,

V

V d

V

V V d V V e
V



 

      


  , (12) 

in which two non-dimensional functions  V ,  V  of one variable are expressed in terms of 

the measurable quantities only as 

  

 

 
   

   
 

       

   

** ** ***
*

** * **
,

H S H S S H

H S V H S

P V P V P V E V P V E VV
V V V

E V E V C T E V E V
 

  

 

 
 

 
. (13) 

In the case of constant heat capacity, the skeleton (6) reduces to the simpler form 

 

  
 

   

*

*
, ln V

V

S V

E E C V
S V E S C

E V E C V





  
 

  
. (14) 

 

Inserting the solution (equation 11) in the formula (equation 14), we arrive at the following 

complete equation of state for hydrocode (where we made a special choice * *E CT  for the 

arbitrary constant) 

 

  
 

   

* *

* *

,
, ln

,

V

V

S V

E C T V V
S V E S C

E V C T V V










 


. (15) 
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Associated with equation 15, expressions of the absolute temperature and pressure are as 

follows: 

 

 
 * *,

,
V

V

E C T V V
T V E

C


  , (16) 

and 

 

 
 

 
** ** ***

* * ** **
, H S S H H S

H S H S

V P P E P E PE
P V E E V E

V V E E E E




  

 

 
   

 
. (17) 

The formula of the pressure (equation 17) shows that  ,P V E  is a linear function of the internal 

energy density, as it should be in the case of constant heat capacity.  In fact, the formula (17) is 

more general, and it does not require the assumption of constant heat capacity.  It is valid when 

the heat capacity is arbitrary function of entropy.  In many applications of the hydrocode in 

ballistics, only the incomplete EOS (equation 17) is required, not the complete EOS (equation 

15). 

 

5. Conclusion 

We analyzed the important problem of thermodynamically consistent recovery of the complete 

EOS for hydrocode from experimental data.  More specifically, we demonstrated how to 

accomplish the recovery based on the measurements of the heat capacity  ,VC C V E  at 

constant volume, of the isentrope  S SE E V , passing through the state  ,V E  , and 

Hugoniot adiabat  **

H HE E V  with the initial state  * *,V E .  

We do not make any special physical hypothesis about the EOS to be recovered. 

We  assume that our media can be adequately described as a two-parameter model, that the 

generated EOS satisfy the thermodynamic stability conditions, and that phase transformations 

can be ignored (see Grinfeld [12] for further discussion). 

It is demonstrated that the recovery basically reduces to solving a nonlinear integro-differential 

(equation 10).  Generally speaking, this equation cannot be solved analytically.  At the same 

time, it allows quite a straight-forward implementation into a computer-based numerical 

analysis. 

In the practically important case of constant heat capacity, the integro-differential equation 10 

allows explicit solution.  The solution is given by the formulas in equations 11 and 12.  The 

corresponding complete EOS for hydrocode is given by the explicit formula (equation 15).  The 
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incomplete EOS for the absolute temperature and pressure are given by the formulas in equations 

16 and 17, respectively. 

The procedure of the recovery of the EOS from the measured constant heat capacity C  at 

constant volume, measured pressure  SP V on the isentrope, and the internal energy density on 

the Hugoniot adiabat  **

HE V  is the following.  First, using the functions  SP V  and  **

HE V  

and the relationships (equations 4 and 5), we calculated two additional functions  SE V  and 

 **

HP V .  Then, using the definitions (equation 13), we calculate the functions  V  and  V . 

Afterwards, using the definitions (12), we calculate the functions  *,V V and  *,V V .  At 

last, we substitute the function  *,V V  into the relationships (equations 15–17) in order to 

determine the complete EOS for the entropy potential  ,S V E  and two incomplete EOS for the 

absolute temperature  ,T V E  and pressure  ,P V E . 

An important issue of tabulating the presented analytical forms for the EOS is discussed 

elsewhere (13, 14). 
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  BLACKSBURG VA 24061-0219 

 

 7 UNIV OF NEBRASKA 

  DEPT OF ENGRG MECH 

  F BOBARU 

  Y DZENIS 

  G GOGOS 

  M NEGAHBAN 

  R FENG 

  J TURNER 

  Z ZHANG 

  LINCOLN NE 68588 

 

 1 UNIV OF DELAWARE 

  CTR FOR COMPST MATRLS 

  J GILLESPIE 

  NEWARK DE 19716 

 

 4 UNIV OF DELAWARE 

  CTR FOR COMPOSITE MTRLS 

  T BUCHANAN 

  T W CHOU 

  A KARLSSON 

  M SANTARE 

  126 SPENCER LAB 

  NEWARK DE 19716 

 

 1 LOUISIANA STATE UNIV 

  R LIPTON 

  304 LOCKETT HALL 

  BATON ROUGE LA 70803-4918 

 

 1 UNIV OF TX AUSTIN 

  INST OF ADVANCED TECH 

  S BLESS 

  3925 W BRAKER LN STE 400 

  AUSTIN TX 78759-5316 

 

 2 WASHINGTON ST UNIV 

  INST OF SHOCK PHYSICS 

  Y M GUPTA 

  J ASAY 

  PULLMAN WA 99164-2814 
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 1 NORTHWESTERN UNIV 

  DEPT OF CIVIL & ENVIRON ENGRG 

  Z BAZANT 

  2145 SHERIDAN RD A135 

  EVANSTON IL 60208-3109 

 

 1 UNIV OF DAYTON 

  RSRCH INST 

  N S BRAR 

  MS SPC 1911 

  300 COLLEGE PARK 

  DAYTON OH 45469 

 

 1 UNIV OF SAN DIEGO 

  DEPT OF MATH AND CMPTR SCI 

  A VELO 

  5998 ALCALA PARK 

  SAN DIEGO CA 92110 

 

 1 MIT 

  DEPT ARNTCS ASTRNTCS 

  R RADOVITZKY 

  77 MASSACHUSETTS AVE 

  CAMBRIDGE MA 02139 

 

 2 DIR USARL 

  RDRL DP 

  C CHABALOWSKI 

  R SKAGGS 

  BLDG 205 

  2800 POWDER MILL RD 

  ADELPHI MD 20783-1197 

 

 1 DIR USARL 

  RDRL SED E 

  T ZHELEVA 

  BLDG 207 RM 2D 47 8 

  2800 POWDER MILL RD 

  ADELPHI MD 20783-1197 

 

 1 DIR USARL 

  RDRL SER L 

  W NOTHWANG 

  BLDG 207 RM 2D43 C 

  2800 POWDER MILL RD 

  ADELPHI MD 20783-1197 

 

 6 US ARMY RSRCH OFC 

  RDRL ROE M 

  J PRATER  

  D STEPP  

  RDRL ROE N 

  R ANTHENIEN 

  RDRL ROI 

  B WEST  

  RDRL ROI M 

  J MYERS  

  RDRL ROS S 

  D LYONS 

  BLDG 4300 

  RESEARCH TRIANGLE PK 

  DUNHAM NC 27703 

 

 

ABERDEEN PROVING GROUND 

 

 84 DIR USARL 

  RDRL CIH C 

   P CHUNG  

   J CAZAMIAS  

   J KNAP  

  RDRL WM 

   B FORCH  

   S KARNA  

   J MCCAULEY 

   P PLOSTINS  

  RDRL WML 

   J NEWILL 

   M ZOLTOSKI 

  RDRL WML B 

   I BATYREV  

   J BRENNAN  

   B RICE  

  RDRL WML H 

   M FERMEN-COKER  

   D SCHEFFLER 

   S SCHRAML 

   B SCHUSTER 

  RDRL WMM 

   J BEATTY 

   R DOWDING 

  RDRL WMM A 

   M MAHER 

   J TZENG 

   E WETZEL 

  RDRL WMM B 

   B CHEESEMAN  

   C FOUNTZOULAS  

   G GAZONAS  

   B LOVE  
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  RDRL WMM E 

   J ADAMS  

   J LASALVIA  

   P PATEL  

   J SWAB  

   M WILL-COLE  

  RDRL WMM F 

   L KECSKES 

  RDRL WMM G 

   I ANDZELM  

   F BEYER  

   J LENHART  

   B RINDERSPACHER  

  RDRL WMP 

   B BURNS  

   S SCHOENFELD  

  RDRL WMP B 

   J FITZPATRICK  

   C HOPPEL  

   D POWELL  

   S SATAPATHY  

   M SCHEIDLER  

   T WEERASOORIYA  

  RDRL WMP C 

   R BECKER  

   S BILYK  

   T BJERKE  

   D CASEM  

   J CLAYTON  

   D DANDEKAR  

   M GREENFIELD (20 CPS) 

   B LEAVY  

   M RAFTENBERG  

   S SEGLETES  

   C WILLIAMS  

  RDRL WMP D 

   R DONEY 

   D KLEPONIS 

   H MEYER 

   J RUNYEON 

   B SCOTT 

   W WALTERS  

  RDRL WMP E 

   W A GOOCH  

   C KRAUTHAUSER  

  RDRL WMP G 

   R BANTON 

   N ELDREDGE 

   S KUKUCK 
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 1 CAVENDISH LABORATORY 

  MUNAWAR CHAUDHRI  

  RM 316B  MOTT BLDG 

  J J THOMSON AVENUE 

  CAMBRIDGE CB3 0HE 

  UK 

 

 1 LOUGHBOROUGH UNIV 

  WOLFSON SCHOOL OF MECHL AND 

  MFG ENGRNG 

  V SILBERSCHMIDT 

  LOUGHBOROUGH 

  LE11 3TU 

  UK 

 

 1 UNIV OF LIVERPOOL 

  DEPT OF ENGRNG 

  HUAJIANG OUYANG 

  BROWNLOW HILL 

  LIVERPOOL 

  L69 3GH 

 

 4 AWE  ALDERMARSTON READING 

  N BOURNE  

  J C F MILLETT  

  G A COX  

  C M ROBINSON  

  BERKSHIRE RG7 4PR UK 

 

 1 WEAPONS SYS DIV  

  DEFENCE SCI AND TECHLGY  

  ORGANISATION 

  ANATOLY RESNYANSKY 

  EDINBURGH SA 5111 

  AUSTRALIA 

 

 1 CSIRO EXPLORATION AND MINING  

  PO BOX 883  

  F D STACEY 

  KENMORE QLD 4069  

  AUSTRALIA 

 

 1 INSTITUTE OF MECHANICS  

  MOSCOW STATE 

  UNIVERSITY MICHURINSKIŒ PR 1  

  ACAD GRIGORYAN S S 

  MOSCOW 117192 RUSSIA 

 

 1 STEKLOV MATHEMATICAL INST  

  GUBKINA AV 8  

  ACAD  KULIKOVSKII A G 

  MOSCOW 117966 

  RUSSIA 

 1 LANDAU INSTITUTE FOR  

  THEORETICAL PHYSICS  

  N INOGAMOV  

  RAS CHERNOGOLOVKA 142432 

  RUSSIA 

 

 5 JOINT INST FOR HIGH  

  TEMPERATURE PHYSICS 

  RUSSIAN ACADEMY OF SCI 

  FORTOV V 

  GRYAZNOV V 

  KANEL GENNADY 

  LOMONOSOV M 

  RAZORENOV SERGEJ 

  JIHT RAS MOSCOW 125412 

  RUSSIA 

 

 1 INST OF CONTINUOUS MEDIA  

  MECHANICS 

  URAL BRANCH OF RAS 

  O B NAIMARK 

  1 ACAD KOROLEV STR 

  PERM RUSSIA 614013 

 

 1 BEN GURION UNIV 

  DEPT OF MECHL ENGRNG 

  ZARETSKY E B 

  PO BOX 653 

  BEER SHEVA 84105 

  ISRAEL 

 

 1 RAFAEL P O BOX 2250 

  Y PARTOM 

  HAIFA 31021 

  ISRAEL 
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INTENTIONALLY LEFT BLANK. 


